ШОТКИ ЭФФЕКТ, уменьшение работы выхода электронов
из твёрдых тел под действием внешнего ускоряющего их электрич. поля. Ш. э.
проявляется в росте тока насыщения термоэлектронной эмиссии, в
уменьшении энергии поверхностной ионизации (см. Ионная эмиссия) и в
сдвиге порога фотоэлектронной эмиссии в сторону больших длин волн лямбда.
Ш. э. возникает в полях E, достаточных для рассасывания пространств,
заряда у поверхности эмиттера (E ~ 10- -100 вхсм-1),
и существен до полей E ~ 106вхсм-1. При
E > 107 вхсм-1 начинает преобладать
просачивание электронов сквозь потенциальный барьер на границе тела (туннельная
эмиссия).
Классич. теория Ш. э. для
металлов создана нем. учёным В. Шотки (1914). Из-за большой электропроводности
металла силовые линии электрич. поля перпендикулярны его поверхности. Поэтому
электрон с зарядом -е, находящийся на расстоянии х > а (а - межатомное
расстояние) от поверхности, взаимодействует с ней так, как если бы он
индуцировал в металле на глубине х своё "электрическое
изображение", т. е. заряд + е. Сила их притяжения:
(Е0 - диэлектрическая
проницаемость вакуума), потенциал этой силы фэ.и. = - e/16пЕ0х.
Внешнее электрич. поле уменьшает фэ.и. на величину E ·
х(см. рис.); на границе металл - вакуум появляется потенциальный барьер с
вершиной при
хм" 8А. Уменьшение работы выхода Ф за
счёт действия поля равно: дельта Ф = е(еЕ/4пЕ0)1/2,
напр., при E=105в*см-1 дельта Ф =
0,12 эв и хм=60А. В результате Ш. э. j экспоненциально
возрастает от
Фэ.и. - потенциальная
энергия электрона в поле силы электрического изображения; еЕх -
потенциальная энергия электрона во внешнем электрическом поле; Ф -
потенциальная энергия электрона вблизи поверхности металла в присутствии
внешнего электрического поля; Фм - работа выхода металла; дельта-Ф - уменьшение
работы выхода под действием внешнего электрического поля; EF -
уровень Ферми в металле; Хм - расстояние от вершины потенциального барьера
до поверхности металла; штриховкой показаны заполненные электронные состояния в
металле.
Болъцмана постоянная, а частотный порог фотоэмиссии hw0
сдвигается на величину:
В случае, когда эмиттирующая
поверхность неоднородна и на ней имеются "пятна" с различной работой
выхода, над её поверхностью возникает электрич. поле "пятен". Это
поле тормозит электроны, вылетающие из участков катода с меньшей, чем у
соседних, работой выхода. Внешнее электрич. поле складывается с полем пятен и,
возрастая, устраняет тормозящее действие последнего. Вследствие этого
эмиссионный ток из неоднородного эмиттера растёт при увеличении E быстрее,
чем в случае однородного эмиттера (аномальный Ш. э.).
Влияние электрич. поля на
эмиссию электронов из полупроводников более сложно. Электрич. поле
проникает в них на большую глубину (от сотен до десятков тысяч атомных слоев).
Поэтому заряд, индуцированный эмиттированным электроном, расположен не на
поверхности, а в слое толщиной порядка радиуса экранирования rэ. Для
x > rэ, справедлива формула (1), но для полей E во
много раз меньших, чем у металлов (Е~102 - 104 в/см). Кроме
того, внешнее электрич. поле, проникая в полупроводник, вызывает в нём
перераспределение зарядов, что приводит к дополнительному уменьшению работы
выхода. Обычно, однако, на поверхности полупроводников имеются поверхностные
электронные состояния. При достаточной их плотности (~1013 см-2)
находящиеся в них электроны экранируют внешнее поле. В этом случае (если
заполнение и опустошение поверхностных состояний под действием поля вылетающего
электрона происходит достаточно быстро) Ш. э. такой же, как и в металлах. Ш. э.
имеет место и при протекании тока через контакт металл - полупроводник (см. Шотки
барьер, Шотки диод).
Лит.: Schottky W., "Physikalische Zeitschrift", 1914, Bd 15, S. 872; Добрецов Л. H., Гомоюнова M. В.,
Эмиссионная электроника, M., 1966; Ненакаливаемые катоды, M., 1974.
T. M.
Лифшиц.